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Module-3: Euler’s Theorem and Dirichlet product

Objectives

• Generalization of Fermat’s Little theorem by Euler.

• Definition and properties of Dirichlet’s product.

• Möbius inversion formula.

Theorem 1 ( Euler’s theorem). Fix a positive integer m and let a ∈ Z be relatively prime to m. Then,

aϕ(m) ≡ 1 (mod m).

Proof. • Let a1,a2, . . . ,aϕ(m) be the positive integers less than m that are relatively prime to m.

• We claim that the sets S = {aa1 (mod m),aa2 (mod m), . . . ,aaϕ(m) (mod m)} and T =

{a1,a2, . . . ,aϕ(m)} are the same.

As gcd(ai,m) = 1 and gcd(a,m) = 1, by Lemma 12 of Module 1 of Chapter 2, we have

gcd(aai,m) = 1. Hence, aai≡ ak, for some k. Moreover, gcd(a,m) = 1 implies that aai≡ aa j

(mod m) if and only if ai ≡ a j (mod m). Thus, we see that each element in S is distinct and

corresponds to some element of T . Also, the number of elements in the two sets are same and

hence S = T .

• Thus, a1 ·a2 · · · ·aϕ(m) ≡ aa1 ·aa2 · · ·aaϕ(m) (mod m) = aϕ(m)a1 ·a2 · · ·aϕ(m) (mod m). As,

gcd(ai,m) = 1, for all i, we get gcd(a1 · · · · ·aϕ(m),m) = 1, and hence

aϕ(m) ≡ 1 (mod m).

Few applications of Euler’s theorem
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1. This gives an explicit formula for the inverse of a modulo m, a−1 ≡ aϕ(m)−1 (mod m).

2. Whenever p is prime ϕ(p) = p−1. Thus, Fermat’s Little theorem (FLT) can be seen as a

corollary to Euler’s theorem.

3. Let n = n1n2 · · ·nk, where gcd(ni,n j) = 1 for all i 6= j. Now by choosing

Ni =
n
ni

and y = a1Nϕ(n1)
1 +a2Nϕ(n2)

2 + · · ·+akNϕ(nk)
k ,

we see that

Ni≡ 0 (mod n j) whenever i 6= j, y≡ aiN
ϕ(ni)
i (mod ni) for 1≤ i≤ k, and Nϕ(ni)

i ≡ 1 (mod ni).

Consequently, y is a solution of the system of linear equations

x≡ ai (mod ni) for 1≤ i≤ k.

This gives an alternate proof of the Chinese remainder theorem.

4. Let n be an odd integer with 5 - n. Then, n divides an integer all of whose digits are equal to 1.

Proof. Since n is odd and 5 - n, gcd(n,10) = 1. So, gcd(9n,10) = 1 and hence by Euler’s

theorem

10ϕ(9n) ≡ 1 (mod 9n).

Or equivalently, there exists a k ∈ Z such that kn = 10ϕ(9n)−1
9 , an integer whose all digits are

1.

Now we will look for an alternate proof for Euler’s theorem. But this proof uses Fermat little

theorem and ϕ is multiplicative.

Proof. First by using induction, we prove the result for n = pk, where p is prime. That is we show

aϕ(pk) ≡ 1 (mod pk), where (a, p) = 1 and k ∈ N. By Fermat’s Little theorem the result is true for
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k = 1. Assume aϕ(pk) ≡ 1 (mod pk) is true for k = m. That is aϕ(pm) = t pm + 1 for some t ∈ Z.

Now we will show the result is true for k = m+1. Consider

aϕ(pm+1) = apm+1(1−1/p)

= ap(pm(1−1/p))

= apϕ(pm) = (t pm +1)p

Thus aϕ(pm+1) = 1+
(p

1

)
(t pm)1 +

(p
2

)
(t pm)2 + · · ·+(t pm)p. Since p|

(p
i

)
for all i ∈ {1,2, . . . , p−1}.

Hence aϕ(pm+1) ≡ 1 (mod pm+1).

Now let n = pr1
1 · p

r2
2 · · · p

rk
k , then ϕ(n) = ϕ(pr1

1 ) ·ϕ(pr2
2 ) · · ·ϕ(prk

k ). Hence aϕ(n) ≡ 1 (mod pri
i )

holds for all i whenever (a,n) = 1. Or equivalently pri
i |aϕ(n)−1 for all 1≤ i≤ k. Finally n|aϕ(n)−1

follows from the fact that pr1
1 , pr2

2 , . . . prk
k are mutually relatively prime.

Definition 2. Let f and g be arithmetic functions. Then, their Dirichlet product or convolution,

denoted f ∗g, is an arithmetic function defined as

( f ∗g)(n) = ∑
d|n

f (d)g
(n

d

)
.

For example, ( f ∗g)(10) = f (1)g(10)+ f (2)g(5)+ f (5)g(2)+ f (10)g(1).

Remark 3. Since d divides n if and only if
n
d

divides n, one has ( f ∗ g)(n) = ∑
d|n

f
( n

d

)
g(d). Or

equivalently, putting e = n
d , we have

( f ∗g)(n) = ∑
ed=n

f (d)g(e),

where ∑
ed=n

denotes summation over all pairs d,e such that de = n.

Properties of Dirichlet Products:

Theorem 4. Let f ,g and h be arithmetic functions. Then,

1. f ∗g = g∗ f .
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2. ( f ∗g)∗h = f ∗ (g∗h).

3. f ∗ I = f .

4. f ∗U = D f .

5. U ∗µ = I.

6. f = D f ∗µ .

Thus, Parts 4 and 5 implies that “for any two arithmetic functions f and g, f ∗U = g if and

only if f = g∗µ”. This is called the ‘Möbius inversion formula’.

Proof. Proof of Part 1: By definition,

( f ∗g)(n) = ∑
ed=n

f (d)g(e)

= ∑
ed=n

g(e) f (d) = ∑
de=n

g(d) f (e)

= (g∗ f )(n).

Proof of Part 2: The result directly follows from definition as

(( f ∗g)∗h)(n) = ∑
ab=n

( f ∗g)(a)h(b)

= ∑
ab=n

(
∑

de=a
f (d)g(e)

)
h(b)

= ∑
deb=n

f (d)g(e)h(b)

= ∑
deb=n

f (d)(g(e)h(b))

= ∑
dk=n

f (d)

(
∑

eb=k
g(e)h(b)

)
= ∑

dk=n
f (d)(g∗h)(k)

= ( f ∗ (g∗h))(n).
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Proof of Part 3: Recall that I(n) = 1, whenever n = 1 and 0, otherwise. Hence,

( f ∗ I)(n) = ∑d|n f (d)I
(n

d

)
= f (n) ·1+ ∑

d|n,d<n
f (d) ·0 = f (n).

Proof of Part 4: Since U(n) = 1 for all n, we have, ( f ∗U)(n) = ∑
d|n

f (d)U
( n

d

)
= ∑

d|n
f (d) =

(D f )(n).

Proof of Part 5: Follows directly from Part 4 and Theorem 4.3 of Module 1 of Chapter 3 as

U ∗µ = µ ∗U = Dµ .

Proof of Part 6: Note that using Parts 3, 4 and 5, we see that

f = f ∗ I = f ∗ (U ∗µ) = ( f ∗U)∗µ = D f ∗µ.

The proof of the next result is omitted as it can be recursively verified.

Lemma 5. Let f be an arithmetic function with f (1) 6= 0. Then, there exists an arithmetic function

g such that f ∗g = I. Moreover, g is given by

g(1) =
1

f (1)
and g(n) =− 1

f (1) ∑
d|n,d<n

g(d) f (
n
d
) for all n≥ 1.

Before stating next result note that component wise multiplication of arithmetic functions f and

g denoted f g and is defined as f g(n) = f (n)g(n) for all n ∈ N.

Theorem 6. Let f be a multiplicative function. Then f is completely multiplicative if and only if

f−1 = µ f

Proof. First suppose that f is completely multiplicative. We have to show that f−1 = µ f . Consider

( f ∗u f )(n) = ∑
d|n

f (n/d)µ(d) f (d)

= f (n)∑
d|n

µ(d)

= f (n)∑
d|n

µ(d)U(n/d) = f (n)(µ ∗U)(n)

= f (n)I(n) = I(n).
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Conversely suppose that f−1 = µ f . We have to show that f is completely multiplicative. Since f is

multiplicative, it is sufficient to show that f (pk) = f (p)k for all primes p and for all k ∈N. Suppose

p be an arbitrary prime number. Then we show f (pk) = f (p)k for all k ∈N by induction. The result

is clearly true for k = 1. Suppose the f (pt) = f (p)t for all 2 ≤ t < k. Since f−1 = µ f , we have

0 = I(pk) = ( f ∗µ f )(pk) = f (pk)+ f−1(p) f (pk−1) as µ(pb) = 0 for b≥ 2. But f−1(p) =− f (p).

Hence we have

0 = f (pk)− f (p) f (p)k−1.

Hence f (pk) = f (p)k.

Corollary 7. Let f be a multiplicative function. Then f is completely multiplicative if and only if

f−1(pk) = 0 for all primes p and for all k ≥ 2.

Corollary 8. Let f be a multiplicative function. Then f is completely multiplicative if and only if

f (g∗h) = f g∗ f h for all arithmetic functions g and h.

Proof. Suppose f completely multiplicative. Consider

f (g∗h)(n) = f (n)(g∗h)(n)

= f (n)[∑
d|n

g(d)h(n/d)]

= ∑
d|n

f (d)g(d) f (n/d)h(n./d) = f g∗ f h(n)

Conversely suppose that f (g∗h) = f g∗ f h for all arithmetic functions g and h. Suppose g =U,h =

µ , then f (g∗h) = f g∗ f h becomes I = f ∗u f .


