Module-3: Euler’s Theorem and Dirichlet product

Objectives

e Generalization of Fermat’s Little theorem by Euler.
e Definition and properties of Dirichlet’s product.

e Mobius inversion formula.

Theorem 1 ( Euler’s theorem). Fix a positive integer m and let a € 7 be relatively prime to m. Then,

a?™ =1 (mod m).

Proof. e Letaj,ay,...,ap(y) be the positive integers less than m that are relatively prime to m.
e We claim that the sets S = {aa; (mod m),aay (mod m),...,aae(, (modm)} and T =
{a1,a2,...,ap(n } are the same.

As ged(aj,m) = 1 and ged(a,m) = 1, by Lemma 12 of Module 1 of Chapter 2, we have
ged(aa;, m) = 1. Hence, aa; = ay, for some k. Moreover, ged(a,m) = 1 implies that aa; = aa;
(mod m) if and only if ; = a; (mod m). Thus, we see that each element in S is distinct and
corresponds to some element of 7. Also, the number of elements in the two sets are same and

hence S=T.

e Thus, aj-ax- -+ agp(m = aay -aay - --adg(y) (mod m) = a®mgq, “ay Qg (m) (mod m). As,

gcd(a;,m) = 1, for all i, we get ged(ay -+ - dg(m),m) = 1, and hence

a®™ =1 (mod m).

Few applications of Euler’s theorem



1. This gives an explicit formula for the inverse of @ modulo m, a~' = a®"™ =1 (mod m).

2. Whenever p is prime ¢(p) = p — 1. Thus, Fermat’s Little theorem (FLT) can be seen as a

corollary to Euler’s theorem.
3. Letn=mnyny---ng, where ged(n;,n;) = 1 for all i # j. Now by choosing
N; = nﬁ, and y = a1N1(P("1) +a2N2(p(n2) SRR +akN,:p(""),
we see that
N;=0 (mod n;) whenever i # j, yEa,-Ni(P("i) (mod n;) for 1 <i<k, and ]\[l.(p("i) =1 (mod n;).
Consequently, y is a solution of the system of linear equations
x=a; (modn;)forl <i<k.
This gives an alternate proof of the Chinese remainder theorem.

4. Let n be an odd integer with 5 1 n. Then, n divides an integer all of whose digits are equal to 1.

Proof. Since n is odd and 5 1 n, ged(n, 10) = 1. So, ged(9n,10) = 1 and hence by Euler’s

theorem

10 =1 (mod 9n).
Or equivalently, there exists a k € Z such that kn = 10¢<99n)_1 , an integer whose all digits are
1. ]

Now we will look for an alternate proof for Euler’s theorem. But this proof uses Fermat little

theorem and ¢ is multiplicative.

Proof. First by using induction, we prove the result for n = p¥, where p is prime. That is we show

a®P) =1 (mod pX), where (a,p) = 1 and k € N. By Fermat’s Little theorem the result is true for



k=1. Assume a®P") = 1 (mod p*) is true for k = m. That is a®?") = rp™ 41 for some ¢ € Z.

Now we will show the result is true for k = m + 1. Consider

a®P" gt (-1/p)
PP (1=1/p))

— gPe") — (tp" +1)?

Thus o) = 1 + (D ep™'+ () @p™)*+ -+ (tp™)P. Since p|(?) foralli € {1,2,...,p—1}.
Hence a®®"") =1 (mod p™*1).

Now letn= p'' - pb*--- pi¥, then @(n) = @(p}') - 9(p5)--- o(p}*). Hence a®™ =1 (mod pi')
holds for all i whenever (a,n) = 1. Or equivalently p/'{a®") — 1 for all 1 <i < k. Finally n|a®") — 1

follows from the fact that p!', p7?, ... p;* are mutually relatively prime. O

Definition 2. Let f and g be arithmetic functions. Then, their Dirichlet product or convolution,
denoted f x g, is an arithmetic function defined as

(fx8)m) =Y (g (%)

dln
For example, (f *g)(10) = f(1)g(10) + f(2)g(5) + f(5)g(2) + f(10)g(1).

Remark 3. Since d divides n if and only lfg divides n, one has (fxg)(n) = ¥ f (%) g(d). Or
d|n
equivalently, putting e = 7, we have

(f*g)(n) =Y f(d)

ed=n

where Y, denotes summation over all pairs d,e such that de = n.
ed=n

Properties of Dirichlet Products:

Theorem 4. Let f,g and h be arithmetic functions. Then,

1. fxg=gxf.



N

(f*g)xh=fx*(gxh)
3. fxI=f.
4. f+xU = Df.

5. Uxu=1.

IS

f=Dfxu.
Thus, Parts | and|implies that “for any two arithmetic functions f and g, f U = g if and
only if f =g+ W”. This is called the ‘Mo6bius inversion formula’.

Proof. Proof of Part [I} By definition,

(fx)(n) =} f(d)g(e)

ed=n
B dz g(e)f(d) :dZ g(d)f(e)
= (gxf)(n).

Proof of Part 2} The result directly follows from definition as

((fxg)xh)(n) = ) (f*g)(@h(b)

ab=n
. (zf< ) |
ab=n \de=a
= Z fd
deb=n
= ) f(d)(g(e)h(d))
deb=n
(g
dk=n eb=k
= Zf (gxh)(k
dk=n

= (fx(gxh))(n).



Proof of Part Recall that /(n) = 1, whenever n = 1 and 0, otherwise. Hence,

(f+D)(m) = Ydinf @1 (5) = fn)-1+ ¥ f(d)-0= f(n).
dlnd<n
Proof of Part 4t Since U(n) =1 for all n, we have, (f+xU)(n) = de(d)U (g) =Y f(d) =
(D) (n). ' "
Proof of Part[5} Follows directly from Part 4] and Theorem 4.3 of Module 1 of Chapter 3 as
Uxu=uxU=Du.
Proof of Part[6} Note that using Parts 3| 4 and[5] we see that

f=frl=fxUxp)=(f+U)sp=Df*p.

The proof of the next result is omitted as it can be recursively verified.

Lemma 5. Let f be an arithmetic function with f(1) # 0. Then, there exists an arithmetic function

g such that fxg = 1. Moreover, g is given by

o) = 7y and &) == o5 L, sl@)f () foralin=1.
din,d<n

Before stating next result note that component wise multiplication of arithmetic functions f and

g denoted fg and is defined as fg(n) = f(n)g(n) for all n € N.

Theorem 6. Let [ be a multiplicative function. Then f is completely multiplicative if and only if
f=uf

Proof. First suppose that f is completely multiplicative. We have to show that f~' = u f. Consider

(fxuf)(n) = ) f(n/d)u(d)f(d)

din
zf(n);u(d)
dln
= JO)EM@U0/d) = Fe)a0)
dln

= F()I(n) = 1(n).



Conversely suppose that f~! = 1 f. We have to show that f is completely multiplicative. Since f is
multiplicative, it is sufficient to show that f(p*) = f(p)* for all primes p and for all kK € N. Suppose
p be an arbitrary prime number. Then we show f(pX) = f(p)* for all k € N by induction. The result
is clearly true for k = 1. Suppose the f(p') = f(p)’ forall 2 <t < k. Since f~! = uf, we have
0=1(p") = (f+uf)(P") = f(P)+f(p)f(P*") as u(p”) = 0 for b > 2. But f~' (p) = —f(p)

Hence we have

0=f(p") — f(p)f(p)".
Hence /(p*) = f(p)" a

Corollary 7. Let f be a multiplicative function. Then f is completely multiplicative if and only if
£~ Y(p*) = 0 for all primes p and for all k > 2.

Corollary 8. Let f be a multiplicative function. Then f is completely multiplicative if and only if
f(gxh) = fgx fhfor all arithmetic functions g and h.

Proof. Suppose f completely multiplicative. Consider

flgxh)(n) = f(n)(gxh)(n)
= Zg h(n/d)]

d|n

= Y f(d)g(d)f(n/d)h(n./d) = fg* fhin)

din

Conversely suppose that f(g*h) = fg= fh for all arithmetic functions g and 4. Suppose g =U,h =
W, then f(gxh) = fg* fhbecomes I = f*uf. ]



