Objectives

- Generalization of Fermat's Little theorem by Euler.
- Definition and properties of Dirichlet's product.
- Möbius inversion formula.

Theorem 1 (Euler's theorem). *Fix a positive integer m and let* $a \in \mathbb{Z}$ *be relatively prime to m. Then,* $a^{\varphi(m)} \equiv 1 \pmod{m}$.

• Let $a_1, a_2, \ldots, a_{\varphi(m)}$ be the positive integers less than *m* that are relatively prime to *m*.

• We claim that the sets $S = \{aa_1 \pmod{m}, aa_2 \pmod{m}, \dots, aa_{\varphi(m)} \pmod{m}\}$ and $T = \{a_1, a_2, \dots, a_{\varphi(m)}\}$ are the same.

As $gcd(a_i, m) = 1$ and gcd(a, m) = 1, by Lemma 12 of Module 1 of Chapter 2, we have $gcd(aa_i, m) = 1$. Hence, $aa_i \equiv a_k$, for some k. Moreover, gcd(a, m) = 1 implies that $aa_i \equiv aa_j$ (mod m) if and only if $a_i \equiv a_j \pmod{m}$. Thus, we see that each element in S is distinct and corresponds to some element of T. Also, the number of elements in the two sets are same and hence S = T.

• Thus, $a_1 \cdot a_2 \cdots a_{\varphi(m)} \equiv aa_1 \cdot aa_2 \cdots aa_{\varphi(m)} \pmod{m} = a^{\varphi(m)}a_1 \cdot a_2 \cdots a_{\varphi(m)} \pmod{m}$. As, gcd $(a_i, m) = 1$, for all *i*, we get gcd $(a_1 \cdots a_{\varphi(m)}, m) = 1$, and hence

$$a^{\varphi(m)} \equiv 1 \pmod{m}.$$

Few applications of Euler's theorem

- 1. This gives an explicit formula for the inverse of *a* modulo *m*, $a^{-1} \equiv a^{\varphi(m)-1} \pmod{m}$.
- 2. Whenever *p* is prime $\varphi(p) = p 1$. Thus, Fermat's Little theorem (FLT) can be seen as a corollary to Euler's theorem.
- 3. Let $n = n_1 n_2 \cdots n_k$, where $gcd(n_i, n_j) = 1$ for all $i \neq j$. Now by choosing

$$N_i = \frac{n}{n_i}$$
 and $y = a_1 N_1^{\varphi(n_1)} + a_2 N_2^{\varphi(n_2)} + \dots + a_k N_k^{\varphi(n_k)}$

we see that

$$N_i \equiv 0 \pmod{n_j}$$
 whenever $i \neq j, y \equiv a_i N_i^{\varphi(n_i)} \pmod{n_i}$ for $1 \le i \le k$, and $N_i^{\varphi(n_i)} \equiv 1 \pmod{n_i}$

Consequently, y is a solution of the system of linear equations

$$x \equiv a_i \pmod{n_i}$$
 for $1 \le i \le k$.

This gives an alternate proof of the Chinese remainder theorem.

4. Let *n* be an odd integer with $5 \nmid n$. Then, *n* divides an integer all of whose digits are equal to 1.

Proof. Since *n* is odd and $5 \nmid n$, gcd(n, 10) = 1. So, gcd(9n, 10) = 1 and hence by Euler's theorem

$$10^{\varphi(9n)} \equiv 1 \pmod{9n}.$$

Or equivalently, there exists a $k \in \mathbb{Z}$ such that $kn = \frac{10^{\varphi(9n)} - 1}{9}$, an integer whose all digits are 1.

Now we will look for an alternate proof for Euler's theorem. But this proof uses Fermat little theorem and φ is multiplicative.

Proof. First by using induction, we prove the result for $n = p^k$, where p is prime. That is we show $a^{\varphi(p^k)} \equiv 1 \pmod{p^k}$, where (a, p) = 1 and $k \in \mathbb{N}$. By Fermat's Little theorem the result is true for

k = 1. Assume $a^{\varphi(p^k)} \equiv 1 \pmod{p^k}$ is true for k = m. That is $a^{\varphi(p^m)} = tp^m + 1$ for some $t \in \mathbb{Z}$. Now we will show the result is true for k = m + 1. Consider

$$a^{\varphi(p^{m+1})} = a^{p^{m+1}(1-1/p)}$$

= $a^{p(p^m(1-1/p))}$
= $a^{p\varphi(p^m)} = (tp^m + 1)^{p}$

Thus $a^{\varphi(p^{m+1})} = 1 + {p \choose 1} (tp^m)^1 + {p \choose 2} (tp^m)^2 + \dots + (tp^m)^p$. Since $p | {p \choose i}$ for all $i \in \{1, 2, \dots, p-1\}$. Hence $a^{\varphi(p^{m+1})} \equiv 1 \pmod{p^{m+1}}$.

Now let $n = p_1^{r_1} \cdot p_2^{r_2} \cdots p_k^{r_k}$, then $\varphi(n) = \varphi(p_1^{r_1}) \cdot \varphi(p_2^{r_2}) \cdots \varphi(p_k^{r_k})$. Hence $a^{\varphi(n)} \equiv 1 \pmod{p_i^{r_i}}$ holds for all *i* whenever (a, n) = 1. Or equivalently $p_i^{r_i} | a^{\varphi(n)} - 1$ for all $1 \le i \le k$. Finally $n | a^{\varphi(n)} - 1$ follows from the fact that $p_1^{r_1}, p_2^{r_2}, \dots, p_k^{r_k}$ are mutually relatively prime.

Definition 2. Let f and g be arithmetic functions. Then, their **Dirichlet product or convolution**, denoted f * g, is an arithmetic function defined as

$$(f * g)(n) = \sum_{d|n} f(d)g\left(\frac{n}{d}\right).$$

For example, (f * g)(10) = f(1)g(10) + f(2)g(5) + f(5)g(2) + f(10)g(1).

Remark 3. Since d divides n if and only if $\frac{n}{d}$ divides n, one has $(f * g)(n) = \sum_{d|n} f\left(\frac{n}{d}\right)g(d)$. Or equivalently, putting $e = \frac{n}{d}$, we have

$$(f*g)(n) = \sum_{ed=n} f(d)g(e),$$

where $\sum_{ed=n}$ denotes summation over all pairs d, e such that de = n.

Properties of Dirichlet Products:

Theorem 4. Let f, g and h be arithmetic functions. Then,

l. f * g = g * f.

- 2. (f * g) * h = f * (g * h).
- 3. f * I = f.
- 4. f * U = Df.
- 5. $U * \mu = I$.
- 6. $f = Df * \mu$.

Thus, Parts 4 and 5 implies that "for any two arithmetic functions f and g, f * U = g if and only if $f = g * \mu$ ". This is called the 'Möbius inversion formula'.

1

Proof. Proof of Part 1: By definition,

$$(f * g)(n) = \sum_{ed=n} f(d)g(e)$$

=
$$\sum_{ed=n} g(e)f(d) = \sum_{de=n} g(d)f(e)$$

=
$$(g * f)(n).$$

Proof of Part 2: The result directly follows from definition as

$$((f * g) * h)(n) = \sum_{ab=n} (f * g)(a)h(b)$$

$$= \sum_{ab=n} \left(\sum_{de=a} f(d)g(e)\right)h(b)$$

$$= \sum_{deb=n} f(d)g(e)h(b)$$

$$= \sum_{deb=n} f(d)(g(e)h(b))$$

$$= \sum_{dk=n} f(d)\left(\sum_{eb=k} g(e)h(b)\right)$$

$$= \sum_{dk=n} f(d)(g * h)(k)$$

$$= (f * (g * h))(n).$$

Proof of Part 3: Recall that I(n) = 1, whenever n = 1 and 0, otherwise. Hence,

$$(f*I)(n) = \sum d|nf(d)I\left(\frac{n}{d}\right) = f(n) \cdot 1 + \sum_{d|n,d < n} f(d) \cdot 0 = f(n)$$

Proof of Part 4: Since U(n) = 1 for all *n*, we have, $(f * U)(n) = \sum_{d|n} f(d)U\left(\frac{n}{d}\right) = \sum_{d|n} f(d) = (Df)(n)$.

Proof of Part 5: Follows directly from Part 4 and Theorem 4.3 of Module 1 of Chapter 3 as $U * \mu = \mu * U = D\mu$.

Proof of Part 6: Note that using Parts 3, 4 and 5, we see that

$$f = f * I = f * (U * \mu) = (f * U) * \mu = Df * \mu.$$

The proof of the next result is omitted as it can be recursively verified.

Lemma 5. Let f be an arithmetic function with $f(1) \neq 0$. Then, there exists an arithmetic function g such that f * g = I. Moreover, g is given by

$$g(1) = \frac{1}{f(1)}$$
 and $g(n) = -\frac{1}{f(1)} \sum_{d|n,d < n} g(d) f(\frac{n}{d})$ for all $n \ge 1$.

Before stating next result note that component wise multiplication of arithmetic functions f and g denoted fg and is defined as fg(n) = f(n)g(n) for all $n \in \mathbb{N}$.

Theorem 6. Let *f* be a multiplicative function. Then *f* is completely multiplicative if and only if $f^{-1} = \mu f$

Proof. First suppose that f is completely multiplicative. We have to show that $f^{-1} = \mu f$. Consider

$$\begin{aligned} (f * uf)(n) &= \sum_{d|n} f(n/d) \mu(d) f(d) \\ &= f(n) \sum_{d|n} \mu(d) \\ &= f(n) \sum_{d|n} \mu(d) U(n/d) = f(n) (\mu * U)(n) \\ &= f(n) I(n) = I(n). \end{aligned}$$

Conversely suppose that $f^{-1} = \mu f$. We have to show that f is completely multiplicative. Since f is multiplicative, it is sufficient to show that $f(p^k) = f(p)^k$ for all primes p and for all $k \in \mathbb{N}$. Suppose p be an arbitrary prime number. Then we show $f(p^k) = f(p)^k$ for all $k \in \mathbb{N}$ by induction. The result is clearly true for k = 1. Suppose the $f(p^t) = f(p)^t$ for all $2 \le t < k$. Since $f^{-1} = \mu f$, we have $0 = I(p^k) = (f * \mu f)(p^k) = f(p^k) + f^{-1}(p)f(p^{k-1})$ as $\mu(p^b) = 0$ for $b \ge 2$. But $f^{-1}(p) = -f(p)$. Hence we have

$$0 = f(p^k) - f(p)f(p)^{k-1}.$$

Hence $f(p^k) = f(p)^k$.

Corollary 7. Let f be a multiplicative function. Then f is completely multiplicative if and only if $f^{-1}(p^k) = 0$ for all primes p and for all $k \ge 2$.

Corollary 8. Let f be a multiplicative function. Then f is completely multiplicative if and only if f(g * h) = fg * fh for all arithmetic functions g and h.

Proof. Suppose f completely multiplicative. Consider

$$f(g*h)(n) = f(n)(g*h)(n)$$

= $f(n)[\sum_{d|n} g(d)h(n/d)]$
= $\sum_{d|n} f(d)g(d)f(n/d)h(n./d) = fg*fh(n)$

Conversely suppose that f(g * h) = fg * fh for all arithmetic functions g and h. Suppose $g = U, h = \mu$, then f(g * h) = fg * fh becomes I = f * uf.